Top 5 Pre-Trained NLP Language Models

Daffodil Software
4 min readOct 22, 2020

--

Natural Language Processing (NLP) is a pre-eminent AI technology that’s enabling machines to read, decipher, understand, and make sense of the human languages. From text prediction, sentiment analysis to speech recognition, NLP is allowing the machines to emulate human intelligence and abilities impressively.

For building NLP applications, language models are the key. However, building complex NLP language models from scratch is a tedious task. That is why AI developers and researchers swear by pre-trained language models. These models utilize the transfer learning technique for training wherein a model is trained on one dataset to perform a task. Then the same model is repurposed to perform different NLP functions on a new dataset.

The pre-trained model solves a specific problem and requires fine-tuning, which saves a lot of time and computational resources to build a new language model. There are several pre-trained NLP models available that are categorized based on the purpose that they serve. Let’s take a look at top 5 pre-trained NLP models.

1. BERT (Bidirectional Encoder Representations from Transformers)

BERT is a technique for NLP pre-training, developed by Google. It utilizes the Transformer, a novel neural network architecture that’s based on a self-attention mechanism for language understanding. It was developed to address the problem of sequence transduction or neural machine translation. That means, it suits best for any task that transforms an input sequence to an output sequence, such as speech recognition, text-to-speech transformation, etc.

In its vanilla form, the transformer includes two separate mechanisms: an encoder (which reads the text input) and a decoder (which produces a prediction for the task). The goal of the BERT mechanism is to generate a language model. Thus, only the encoder mechanism is necessary.

The BERT algorithm is proven to perform 11 NLP tasks efficiently. It’s trained on 2,500 million Wikipedia words and 800 million words of the BookCorpus dataset. Google Search is one of the most excellent examples of BERT’s efficiency. Other applications from Google, such as Google Docs, Gmail Smart Compose utilizes BERT for text prediction.

2. RoBERTa (Robustly Optimized BERT Pretraining Approach)

RoBERTa is an optimized method for the pre-training of a self-supervised NLP system. It builds the language model on BERT’s language masking strategy that enables the system to learn and predict intentionally hidden sections of text.

RoBERTa modifies the hyperparameters in BERT such as training with larger mini-batches, removing BERT’s next sentence pretraining objective, etc. Pre-trained models like RoBERTa is known to outperform BERT in all individual tasks on the General Language Understanding Evaluation (GLUE) benchmark and can be used for NLP tasks such as question answering, dialogue systems, document classification, etc.

3. OpenAI’s GPT-3

GPT-3 is a transformer-based NLP model that performs translation, question-answering, poetry composing, cloze tasks, along with tasks that require on-the-fly reasoning such as unscrambling words. Moreover, with its recent advancements, the GPT-3 is used to write news articles and generate codes.

GPT-3 can manage statistical dependencies between different words. It is trained on over 175 billion parameters on 45 TB of text that’s sourced from all over the internet. With this, it is one of the biggest pre-trained NLP models available.

What differentiates GPT-3 from other language models is it does not require fine-tuning to perform downstream tasks. With its ‘text in, text out’ API, the developers are allowed to reprogram the model using instructions.

4. ALBERT

The increasing size of pre-trained language models helps in improving the performance of downstream tasks. However, as the model size increases, it leads to issues such as longer training times and GPU/TPU memory limitations. To address this problem, Google presented a lite version of BERT (Bidirectional Encoder Representations from Transformers). This model was introduced with two parameter-reduction techniques:

  • Factorized Embedding Parameterization: Here, the size of the hidden layers are separated from the size of vocabulary embeddings.
  • Cross-Layer Parameter Sharing: This prevents the number of parameters from growing with the depth of the network.

These parameter reduction techniques help in lowering memory consumption and increase the training speed of the model. Moreover, ALBERT introduces a self-supervised loss for sentence order prediction which is a BERT limitation with regard to inter-sentence coherence.

5. XLNet

Denoising autoencoding based language models such as BERT helps in achieving better performance than an autoregressive model for language modelling. That is why there is XLNet that introduces the auto-regressive pre-training method which offers the following benefits- it enables learning bidirectional context and helps overcome the limitations of BERT with its autoregressive formula. XLNet is known to outperform BERT on 20 tasks, which includes natural language inference, document ranking, sentiment analysis, question answering, etc.

Building an AI Application with Pre-Trained NLP Models

The importance and advantages of pre-trained language models are quite clear. Thankfully, developers have access to these models that helps them to achieve precise output, save resources, and time of AI application development.

But, which NLP language model works best for your AI project? Well, the answer to that depends upon the scale of the project, type of dataset, training methodologies, and several other factors. To understand which NLP language model will help your project to achieve maximum accuracy and reduce its time to market, you can connect with our AI experts.

For that, you can set-up a free consultation session with them wherein they will be guiding you with the right approach to the development of your AI-based application.

--

--

Daffodil Software
Daffodil Software

Written by Daffodil Software

We build Mobile, IOT, & Web solutions that are intuitive, reactive and agile | www.daffodilsw.com

No responses yet